The Crystal Structure of $\mathrm{Na}_{3}\left[\mathrm{~B}_{3} \mathrm{O}_{5}(\mathbf{O H})_{2}\right]$

By E. Corazza, S. Menchetti and C. Sabelli
Centro di Studio per la Mineralogia e la Geochimica dei Sedimenti, Istituto di Mineralogia dell' Università, 50121 Firenze, Italy

(Received 4 February 1975; accepted 24 February 1975)

Abstract

The crystal structure of the synthetic compound $3 \mathrm{Na}_{2} \mathrm{O} .3 \mathrm{~B}_{2} \mathrm{O}_{3} .2 \mathrm{H}_{2} \mathrm{O}$, space group Pnma, $a=8.923$ (1), $b=7 \cdot 152$ (1), $c=9.548$ (1) \AA, was determined from single-crystal diffractometer X-ray data. Direct methods were used to solve the structure which was later refined by least-squares calculations to an R of $0 \cdot 029$. The structure determination showed that the compound labelled in the literature as ' $1: 1: 1$ ' has actually a composition corresponding to $\mathrm{Na}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ molar proportions of 3:3:2. The basic structural unit is the isolated polyion $\left[\mathrm{B}_{3} \mathrm{O}_{5}(\mathrm{OH})_{2}\right]^{3-}$ formed by corner-sharing among one tetrahedron and two triangles. Of the four attached oxygen atoms only the two linked to the tetrahedral boron exist as hydroxyl groups. Na polyhedra form a tight two-dimensional network by the sharing of corners, edges and faces. All oxygen atoms linked to the Na atoms belong at the same time to the B-O polyions and vice-versa. A high cohesion in all directions is the result of the perpendicular arrangement between $\mathrm{B}-\mathrm{O}$ rings and $\mathrm{Na}-\mathrm{O}$ sheets. The crystal chemical formula of the compound investigated is $\mathrm{Na}_{3}\left[\mathrm{~B}_{3} \mathrm{O}_{5}(\mathrm{OH})_{2}\right]$.

Introduction

One of the many phases obtained in the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3}-$ $\mathrm{H}_{2} \mathrm{O}$ system (Stoppioni, 1974) has an X-ray powder pattern identical with the one assigned by Nies \& Hulbert (1967) to the sodium metaborate hemihydrate, that is to the compound with $\mathrm{Na}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ molar proportions $1: 1: 1$. There has been discussion about the region of stability of this phase, while about the chemical composition there was a general agreement on the molar proportions 1:1:1 (Sborgi, 1932; Bouaziz, 1962; Nies \& Hulbert, 1967; Kocher, 1970).

However, the structural study, undertaken as a part of a programme on hydrated sodium borates, revealed that this phase has actually the crystal chemical formula $\mathrm{Na}_{3}\left[\mathrm{~B}_{3} \mathrm{O}_{5}(\mathrm{OH})_{2}\right]$ corresponding to the molar proportions $3: 3: 2$. This compound seems also of interest because of the presence of oxygen atoms linked to only one boron; they do not bond to a proton as they do in fully hydrated borates according to Christ's (1960) third rule.

Experimental

Crystals of the title compound were prepared in a pressure vessel under hydrothermal conditions at $150^{\circ} \mathrm{C}$ and in the range of $\mathrm{Na}_{2} \mathrm{O}: \mathrm{B}_{2} \mathrm{O}_{3}$ molar ratios from 0.614 to $3 \cdot 909$. The 3:3:2 phase was always associated with more or less important amounts of sodium metaborate dihydrate ($1: 1: 4$), evidently formed while cooling. The crystals, slightly deliquescent, are sometimes well formed with dimensions up to 2 mm and a pseudotetragonal habit. The identity between the 3:3:2 phase and the phase labelled ' $1: 1: 1$ ' in previous works was confirmed by the close similarity of X-ray powder patterns.

Crystal data are given in Table 1. The agreement be-
tween the specific gravity (determined by flotation in a bromonaphthalene-bromoform mixture) and the calculated density is not completely satisfactory, possibly because of the deliquescence of the crystals. The unitcell dimensions were determined from 25 high-angle reflexions measured on a single-crystal diffractometer. The space group, determined from the absences, is Pnma or Pna2 ${ }_{1}$; a statistical test (Karle, Dragonette \& Brenner, 1965) indicated the centrosymmetric group as the most likely one.

Table 1. Crystal data

$\mathrm{Na}_{3}\left[\mathrm{~B}_{3} \mathrm{O}_{5}(\mathrm{OH})_{2}\right]$	$V=609 \cdot 3 \AA^{3}$
F.W. $215 \cdot 4$	$Z=4$
Space group: Pnma	$D_{m}=2 \cdot 2 \mathrm{~g} \mathrm{~cm}^{-3}$
Unit-cell dimensions	$D_{x}=2 \cdot 349 \mathrm{~g} \mathrm{~cm}^{-3}$
$a=8.923(1) \AA$	$\mu(\mathrm{Mo} K \alpha)=4 \cdot 2 \mathrm{~cm}^{-1}$
$b=7 \cdot 152$ (1)	$F(000)=424$
$c=9.548(1)$	

Intensities were measured with a Philips PW 1100 four-circle computer-controlled diffractometer (Centro di Cristallografia Strutturale del CNR, Pavia, Italy), with Mo $K \alpha$ radiation and the $\omega-2 \theta$ scan technique. 955 reflexions within the range $3^{\circ}<\theta<30^{\circ}$ were inspected with scan speed $0.07^{\circ} \mathrm{s}^{-1}$ and scan range 1.4°. The background was measured on both sides of the peak; for lower intensities scans were repeated up to three times. Reflexions for which $\left(I_{\text {peak }}-2 V I_{\text {peak }}\right) \leq I_{\text {back }}$ were considered as unobserved. The set actually used in the structure analysis consisted of 829 non-zero reflexions.

Intensities were corrected for Lorentz-polarization effects; absorption was considered negligible because of the low linear absorption coefficient and the small size of the crystal (nearly equidimensional with a 'radius' of 0.16 mm).

Structure analysis and refinement

The structure factors were converted into normalized structure amplitudes. The 234 largest E 's ($E \geq 1 \cdot 10$)
were selected as input to the MULTAN program (Germain, Main \& Woolfson, 1971) which was used in its fully automatic mode. The structural model obtained from F_{o} maps computed with the set of signs with the

Table 2. Fractional atomic coordinates, anisotropic thermal parameters $\left(\times 10^{5}\right)$ and equivalent isotropic thermal parameters

The estimated standard deviations are given in parentheses. The temperature factors refer to the expression:
$\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{23} k l+2 \beta_{13} h l\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	$B_{\text {eq }}$
$\mathrm{Na}(1)$	$0 \cdot 27174$ (7)	$0 \cdot 50189$ (9)	$0 \cdot 30250$ (7)	338 (8)	575 (12)	381 (7)	-36 (8)	-5 (6)	- 51 (8)	${ }^{\text {eq9 }}$
$\mathrm{Na}(2)$	$0 \cdot 53606$ (11)	$0 \cdot 75$	$0 \cdot 33138$ (10)	355 (11)	597 (18)	433 (11)	(8)	62 (9)	(8)	1.3
B (1)	$0 \cdot 51456$ (28)	$0 \cdot 25$	$0 \cdot 21562$ (25)	220 (27)	502 (44)	171 (23)	0	-17(21)	0	0.8
$\mathrm{B}(2)$	$0 \cdot 59687$ (28)	0.25	-0.04128 (27)	270 (27)	355 (41)	265 (24)	0	10 (21)	0	0.9
$\mathrm{B}(3)$	$0 \cdot 32457$ (27)	0.25	$0 \cdot 01941$ (26)	263 (27)	353 (41)	243 (25)	0	2 (21)	0	0.8
$\mathrm{OH}(1)$	$0 \cdot 53287$ (13)	0.41888 (16)	$0 \cdot 30500$ (11)	346 (13)	496 (20)	266 (11)	23 (14)	-64 (10)	-31 (13)	1.0
$\mathrm{O}(2)$	$0 \cdot 36184$ (17)	$0 \cdot 25$	$0 \cdot 15959$ (16)	206 (17)	739 (31)	198 (16)	0	-16 (14)	0	1.0
$\mathrm{O}(3)$	$0 \cdot 62712$ (17)	0.25	$0 \cdot 10239$ (16)	222 (17)	765 (31)	205 (15)	0	22 (14)	0	1.0
$\mathrm{O}(4)$	$0 \cdot 70061$ (18)	0.25	-0.13946 (17)	349 (19)	751 (32)	280 (17)	0	87 (15)	0	$1 \cdot 2$
O(5)	$0 \cdot 44165$ (17)	0.25	-0.07923 (16)	266 (19)	1247 (37)	191 (17)	0	10 (14)	0	1.4
O(6)	$0 \cdot 18312$ (16)	0.25	-0.02559 (16)	236 (18)	772 (31)	236 (17)		-29 (14)		$1 \cdot 1$
H	0.578 (2)	0.392 (3)	0.374 (2)					(14)		$2 \cdot 0$ (5)

Table 3. Observed and calculated structure factors
An asterisk marks unobserved reflexions.

best figures of merit gave an R of $0 \cdot 316$. Scattering factor curves for non-hydrogen atoms were those of Cromer \& Waber (1965) and for hydrogen those of Stewart, Davidson \& Simpson (1965).
Two full-matrix least-squares cycles, with isotropic thermal parameters, led to $R=0 \cdot 064$. A weight $1 / \sqrt{ } \sigma$, with σ derived from counting statistics, was given to all observed reflexions. At this stage an F_{o} map clearly revealed a maximum ($\sim 0.65 \mathrm{e}^{\AA^{-3}}$) attributable to the H atom. A further cycle of refinement with anisotropic thermal parameters for all atoms but hydrogen reduced R to 0.030 . In the next difference synthesis residual

Fig. 1. The arrangement of boron-oxygen polyions in the structure.

Fig. 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$ involving hydrogen bonding.
peaks of no more than $\pm 0 \cdot 15$ e \AA^{-3} were found. After the second and last anisotropic cycle the final R was 0.029 for the observed reflexions and 0.038 including 'less thans'. Seven reflexions ($020,040,002,401,022$, $304,124)$ were considered to be affected by secondary extinction and therefore excluded from least-squares calculations.

Positional and thermal parameters, with their standard deviations, are given in Table 2. A list of observed and calculated structure factor amplitudes is shown in Table 3.

Description of the structure and discussion

The basic unit of the present structure is the isolated $\left[\mathrm{B}_{3} \mathrm{O}_{5}(\mathrm{OH})_{2}\right]^{3-}$ polyion. It consists of a six-membered ring with two of the boron atoms threefold coordinated by oxygen atoms and the third boron fourfold coordinated by two oxygens and two hydroxyl groups. All boron and oxygen atoms (with the exception of the two $\mathrm{OH}(1)$ groups) lie on the mirror plane at $y=\frac{1}{4}$. As a consequence ring and triangles are perfectly planar. The mutual disposition of rings is shown in Fig. 1.

The only asymmetric H bond present in this structure occurs between $\mathrm{OH}(1)$ and $\mathrm{O}(6)$, thus connecting adjacent rings lying on the same mirror plane. In this

Table 4. Na-O, B-O bond distances, $\mathrm{B}-\mathrm{B}$ distances and $\mathrm{O}-\mathrm{O}$ edges of boron coordination polyhedra

$\mathrm{Na}(1)-\mathrm{OH}(1)$	2.405 (1) \AA	$\mathrm{B}(1)-\mathrm{OH}(1) 1.488$ (2)		$\times 2 \AA$		
- $\mathrm{OH}\left(1^{\text {vii }}\right.$)	2.439 (1)	-O(2)	1.464 (3)			
-O(2)	2.399 (1)	-O(3)	1.476 (3)			
-O(3i)	2.395 (1)	Mean	1.479			
$-\mathrm{O}\left(4^{\text {ii }}\right.$)	2.373 (1)					
$-\mathrm{O}\left(5^{\text {iii }}\right)$	2.837 (1)	$\mathrm{B}(2)-\mathrm{O}(3)$	$1 \cdot 398$ (3)			
-O(6iii)	2.451 (1)	-O(4)	$1 \cdot 318$ (3)			
Mean	$2 \cdot 471$	-O(5)	$1.3182(3)$1.432			
		Mean $\quad 1.383$				
$\begin{gathered} \mathrm{Na}(2)-\mathrm{OH}(1) \\ -\mathrm{O}\left(4^{1 \mathrm{i}}\right) \end{gathered}$	$2.382(1) \times 2$	$\mathrm{B}(3)-\mathrm{O}(2)$	$1 \cdot 379$ (3)			
	2.796 (2)	- ${ }^{-\mathrm{O}(5)}$	1.407 (3)			
-O(4)	2.366 (2) 2.416 (2)	$-\mathrm{O}(6)$	1.333 (3)			
-O(6 ${ }^{11 \mathrm{i}}$)	2.385 (2)	Mean				
Mean 2.455		$\mathrm{B}(1)-\mathrm{B}(2) \quad 2.560$ (4)				
$\mathrm{B}(1)$ tetrahedron		$\begin{aligned} & B(1)-B(3) \\ & B(2)-B(3) \end{aligned}$	$\begin{aligned} & 2 \cdot 527 \text { (3) } \\ & 2 \cdot 498 \text { (4) } \end{aligned}$			
$\mathrm{OH}(1)-\mathrm{OH}\left(1^{v}\right)$	$2 \cdot 416$ (2)					
$\mathrm{OH}(1)-\mathrm{O}(2)$	2.391 (2) $\times 2$	$\mathrm{B}(3)$ triangle				
$\mathrm{OH}(1)-\mathrm{O}(3)$	2.431 (2) $\times 2$					
$\mathrm{O}(2)-\mathrm{O}(3)$	2.429 (2)	O(2)-O(5)				
Mean	$2 \cdot 415$	$\mathrm{O}(2)-\mathrm{O}(6)$	$\begin{aligned} & 2 \cdot 381(2) \\ & 2 \cdot 363(2) \end{aligned}$			
		$\mathrm{O}(5)-\mathrm{O}(6)$				
$\mathrm{B}(2)$ triangle		Mean				
$\mathrm{O}(3)-\mathrm{O}(4)$	$2 \cdot 400$ (2)					
$\mathrm{O}(3)-\mathrm{O}(5)$	2.397 (2)					
$\mathrm{O}(4)-\mathrm{O}(5)$	2.381 (2)					
Mean	$2 \cdot 393$					
Symmetry code						
None x,	y,	(iv)	$x, \quad \frac{1}{2}+y$,	$\frac{1}{2}+z$		
(i) $-\frac{1}{2}+x$,	$\frac{1}{2}-y, \quad \frac{1}{2}-z$	(v)	$x, \frac{1}{2}-y$,			
(ii) $1-x$,	$1-y,-z$	(vi)	$x, \frac{3}{2}-y$,			
(iii) $\frac{1}{2}-x$,	$\frac{1}{2}+y, \quad \frac{1}{2}+z$	(vii) $-\frac{1}{2}$	$x, \quad y$,	$\frac{1}{2}-z$		

way $\mathrm{O}(6)$ is the acceptor of two H bonds; the two symmetry-related H atoms are at $2.03 \AA$ from each other (see Fig. 2).

An interesting feature of the above-described polyion is represented by the oxygen atoms labelled $O(4)$ and $O(6)$, both linked to only one threefold-coordinated boron, which do not bond to a proton as they are supposed to in fully hydrated borates. The same triborate ring formed by corner-sharing among one tetrahedron and two triangles has been found previously, e.g. in $\mathrm{Cs}_{2} \mathrm{O} .3 \mathrm{~B}_{2} \mathrm{O}_{3}$ (Krogh-Moe, 1960) and in the mineral ameghinite $\mathrm{Na}\left[\mathrm{B}_{3} \mathrm{O}_{3}(\mathrm{OH})_{4}\right]$ (Dal Negro \& Ungaretti, 1975). In the former compound, however, the triborate ring forms part of a three-dimensional network with $\left[\mathrm{B}_{3} \mathrm{O}_{5}\right]^{-}$as the repeat unit; all oxygen atoms are shared by two boron atoms and of course there are no hydroxyl groups. In ameghinite the triborate group exists in the isolated form $\left[\mathrm{B}_{3} \mathrm{O}_{3}(\mathrm{OH})_{4}\right]^{-}$and unlike the $3: 3: 2$ structure all extracyclic oxygens bond to a proton and exist as hydroxyl groups, according to Christ's (1960) third rule. However the polyion found in the present structure does not represent a deviation from the rule which holds, of course, only when sufficient water is available. The sharing degree of the oxygens in the polyion is confirmed by the observed $\mathrm{B}-\mathrm{O}$ distances. $\mathrm{B}(2)-\mathrm{O}(4)$ and $\mathrm{B}(3)-\mathrm{O}(6)$ bond lengths are indeed well below the average $\mathrm{B}-\mathrm{O}$ triangular distance. Thus the electrostatic imbalance of $O(4)$ and $O(6)$ is in part removed by the strengthening of the related bonds.

Triangles appear to be rather distorted: for instance he $\mathrm{O}-\mathrm{B}(2)-\mathrm{O}$ angles range from $115 \cdot 8$ to $124 \cdot 2^{\circ}$. Rel-
evant interatomic distances and bond angles are given in Tables 4 and 5 , respectively. In the tetrahedron the average B-O and O-O distances are 1.479 and $2 \cdot 415 \AA$ respectively, while the same average distances in tri-

Fig. 3. Packing of Na polyhedra. $\mathrm{Na}(1)$ polyhedra are represented by means of $\mathrm{Na}-\mathrm{O}$ bonds. (The a axis is horizontal, the b axis is vertical and the c axis is towards the observer in a right-handed coordinate system.)

Table 5. Bond angles $\left({ }^{\circ}\right)$
The standard deviations are: for $\mathrm{O}-\mathrm{Na}-\mathrm{O} 0 \cdot 1^{\circ}$; for $\mathrm{O}-\mathrm{B}-\mathrm{O}$ and $\mathrm{B}-\mathrm{O}-\mathrm{B} 0.2^{\circ}$.

$\mathrm{OH}(1)-\mathrm{Na}(1)-\mathrm{OH}\left(1^{\text {vii }}\right)$	$142 \cdot 3$	$\mathrm{OH}(1)-\mathrm{Na}(2)-\mathrm{OH}\left(1^{\text {vi }}\right.$)	167.8
-O(2)	59.7	$-\mathrm{O}\left(4^{\text {(1i) }}\right)$	$85 \cdot 6 \times 2$
-O(3')	109.4	-O(4v)	91.4×2
-O(4)	95.2	-O(5^{11})	84.0×2
-O($5^{\text {III }}$)	$143 \cdot 2$	-O(6 $6^{\text {III }}$)	92.9×2
$-\mathrm{O}\left(6^{111}\right)$	90.7	$\mathrm{O}\left(4^{\text {II }}\right.$) $-\mathrm{Na}(2)-\mathrm{O}\left(4^{\text {IV }}\right.$)	$145 \cdot 8$
$\mathrm{OH}\left(1^{\text {vii }}\right)-\mathrm{Na}(1)-\mathrm{O}(2)$	$82 \cdot 6$	-O(51)	$53 \cdot 8$
$-\mathrm{O}\left(3^{1}\right)$	$60 \cdot 4$	${ }^{-\mathrm{O}}{ }^{\left(6^{111}\right)}$	75.9
-O(4) ${ }^{\text {(1) }}$)	89.8	$\mathrm{O}\left(4^{\text {iv }}\right)-\mathrm{Na}(2)-\mathrm{O}\left(5^{\text {II }}\right.$)	92.0
-O(5ili)	74.5	(1) $-\mathrm{O}\left(6^{\text {III }}\right.$)	138.3
-O(6 ${ }^{\text {III }}$)	127.0	$\mathrm{O}\left(5^{\text {II }}\right)-\mathrm{Na}(2)-\mathrm{O}\left(6^{\text {III }}\right)$	129.6
$\mathrm{O}(2)-\mathrm{Na}(1)-\mathrm{O}\left(3^{11}\right)$ $-\mathrm{O}\left(4^{41}\right)$	80.3 98.8		
-O(5'II)	157.1	$\mathrm{OH}(1)-\mathrm{B}(1)-\mathrm{OH}\left(1^{\text {v }}\right.$)	108.5
$-\mathrm{O}\left(6^{111}\right)$	$150 \cdot 4$	-O(2)	108.2×2
$\mathrm{O}\left(3^{1}\right)-\square \mathrm{Na}(1)-\mathrm{O}\left(4^{11}\right)$	$150 \cdot 1$	-O(3)	110.2×2
-O(5^{111})	$87 \cdot 6$	$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{O}(3)$	111.5
-O(6 ${ }^{\text {III }}$)	$112 \cdot 3$		
$\mathrm{O}\left(4^{\text {ii }}\right)-\mathrm{Na}(1)-\mathrm{O}\left(5^{\text {iii }}\right)$	$82 \cdot 1$		
$-\mathrm{O}\left(6^{111}\right)$	$83 \cdot 2$	$\mathrm{O}(3)-\mathrm{B}(2)-\mathrm{O}(4)$	$124 \cdot 2$
$\mathrm{O}\left(5^{\text {1ii }}\right)-\mathrm{Na}(1)-\mathrm{O}\left(6^{\text {HiI }}\right)$	$52 \cdot 5$	-O(5)	115.8
		$\mathrm{O}(4)-\mathrm{B}(2)-\mathrm{O}(5)$	$120 \cdot 0$
Ring angles			
$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{O}(3)$	111.5	$\mathrm{O}(2)-\mathrm{B}(3)-\mathrm{O}(5)$	118.1
$\mathrm{B}(1)-\mathrm{O}(3)-\mathrm{B}(2)$	126.0	(2) $-\mathrm{O}(6)$	122.7
$\mathrm{O}(3)-\mathrm{B}(2)-\mathrm{O}(5)$	$115 \cdot 8$	$\mathrm{O}(5)-\mathrm{B}(3)-\mathrm{O}(6)$	119.2
$\mathrm{B}(2)-\mathrm{O}(5)-\mathrm{B}(3)$	$123 \cdot 3$		
$\mathrm{O}(5)-\mathrm{B}(3)-\mathrm{O}(2)$	$118 \cdot 1$		
$\mathrm{B}(3)-\mathrm{O}(2)-\mathrm{B}(1)$	$125 \cdot 4$		

Table 6. The electrostatic valence balance
All atoms but $\mathrm{Na}(1), \mathrm{OH}(1)$ and H lie in special positions. Therefore values reported in the row and in the columns correspond-

ing to $\mathrm{OH}(1), \mathrm{Na}(1)$ and H are to be doubled							
Atom	B \square	B \triangle	$\mathrm{Na}(1)$	$\mathrm{Na}(2)$	H^{-}	$\cdots \mathrm{H}$	Sums
O(2)	$0 \cdot 78$	0.98	$0 \cdot 16$				$2 \cdot 08$
O(3)	0.76	0.95	$0 \cdot 16$				$2 \cdot 03$
$\mathrm{O}(4)$		$1 \cdot 19$	$0 \cdot 17$	$\begin{aligned} & 0 \cdot 20 \\ & 0 \cdot 08 \end{aligned}$			1.81
$\mathrm{O}(5)$		$\begin{aligned} & 0.86 \\ & 0.90 \end{aligned}$	0.06	$0 \cdot 17$			2.05
O(6)		$1 \cdot 12$	$0 \cdot 14$	$0 \cdot 19$		0.20	1.99
$\mathrm{OH}(1)$	0.73		$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	$0 \cdot 18$	$0 \cdot 80$		$2 \cdot 02$

angles are $1 \cdot 378$ and $2 \cdot 385 \AA$. The connexions between $\mathrm{B}-\mathrm{O}$ polyions are provided by H bonds and $\mathrm{Na}-\mathrm{O}$ bonds.

In this structure there are two independent Na atoms: $\mathrm{Na}(1)$, which lies in a general position, is sevenfold coordinated by five oxygens and two hydroxyl groups; $\mathrm{Na}(2)$, on the mirror plane, links two hydroxyl groups and four oxygen atoms. All atoms linked by $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ belong to the $\mathrm{B}-\mathrm{O}$ polyion; this is due to the insufficient presence of water, already mentioned. The individual $\mathrm{Na}-\mathrm{O}$ distances (see Table 4) form a rather homogeneous set with two exceptions: $\mathrm{Na}(1)-\mathrm{O}\left(5^{\text {iii }}\right)$ and $\mathrm{Na}(2)-\mathrm{O}\left(4^{\mathrm{ii}}\right)$. These distances are 2.837 and 2.796 \AA, while the average value for both polyhedra is 2.464 \AA. The polyhedra around $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ resemble rather distorted octahedra, the first having a seventh corner which centres a face.

As depicted in Fig. 3, these polyhedra form their own tight two-dimensional network which is built up in the following way: $\mathrm{Na}(2)$ polyhedra form chains parallel to a by corner sharing, while $\mathrm{Na}(1)$ polyhedra form chains in the \mathbf{b} direction by the sharing of an edge and a face alternately. Adjacent $\mathrm{Na}(1)$ chains are joined together in the a direction by corner-sharing to form sheets in the ab plane. The consequence of the alternation of $\mathrm{Na}(2)$ zigzag chains through $\mathrm{Na}(1)$ sheets is that each $\mathrm{Na}(2)$ polyhedron shares four faces with as many surrounding $\mathrm{Na}(1)$ polyhedra; each $\mathrm{Na}(1)$ polyhedron shares three adjacent faces with two $\mathrm{Na}(2)$'s and one $\mathrm{Na}(1)$, respectively.

In the unit cell there are two of the above described $\mathrm{Na}-\mathrm{O}$ sheets lying at a mean z of $\frac{1}{4}$ and $\frac{3}{4}$; they are related to each other by the symmetry centre. However, on the whole this structure does not show a general stratiform arrangement. The mutual disposition of Na polyhedra actually causes dense layers in the structure. On the other hand the water insufficiency forces all oxygen atoms to be coordinated at the same time by boron atoms in such a way that an orientation perpendicular to the Na sheets results for hexagonal B-O rings; hence there is high cohesion in all directions.

An electrostatic valence balance is shown in Table 6, computed according to the method of Brown \& Shannon (1973) and with the data from their Table 1. For the H bonds the curve by the same authors, quoted in Donnay \& Donnay (1973), was employed. From Table 6 it can be seen that the balance is completely satisfactory for all oxygen atoms, except for $\mathrm{O}(4)$. This is one of the two oxygens linked to only one triangular boron, while the other, $\mathrm{O}(6)$, seems instead to be well balanced owing to the contribution of the two H bonds.

In addition to some local programs, the following programs for the CII 10070 computer were used: MULTAN; the ORFLS least-squares program by Busing, Martin \& Levy; the BONDLA bond distances and angles program, from the X-RAY System, 1972; the ORTEP plotting program of Johnson.

References

Bouaziz, R. (1962). Bull. Soc. Chim. Fr. pp. 1451-1456.
Brown, J. D. \& Shannon, R. D. (1973). Acta Cryst. A 29, 266-282.
Christ, C. L. (1960). Amer. Min. 45, 334-340.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Dal Negro, A. \& Ungaretti, L. (1975). In preparation.
Donnay, G. \& Donnay, J. D. H. (1973). Acta Cryst. B29, 1417-1425.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Karle, I. L., Dragonette, K. S. \& Brenner, S. A. (1965). Acta Cryst. 19, 713-716.
Kocher, J. (1970). Bull. Soc. Chim. Fr. pp. 2083-2089.
Krogh-Moe, J. (1960). Acta Cryst. 13, 889-892.
Nies, N. P. \& Hulbert, R. W. (1967). J. Chem. Eng. Data, 12, 303-313.
Sborgi, U. (1932). Gazz. Chim. Ital. 62, 3-14.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Stoppioni, A. (1974). Studio della cristallizzazione in ambiente idrotermale a $150^{\circ} \mathrm{C}$ dei borati di sodio idrati. Thesis, Univ. Firenze, Italy.

